Introduction to Arduino

Instructor: Plamena Milusheva

November 16, 2013
Set up: Drivers and IDE

Download the Arduino Software

Getting Started with Arduino

Introduction: What Arduino is and why you'd want to use it.

Installation: Step-by-step instructions for setting up the Arduino software and connecting it to an Arduino Uno, MEGA2560, Duemilanove, Mega, or Duemilanove.

- Windows
- Mac OS X
- Linux (on the playground wiki)

Environment: Description of the Arduino development environment.

Troubleshooting: Advice on what to do if things don't work.
Some Arduino applications:

...and so much more!
Microcontroller: The brain of your Arduino

ATmega328

- Miniature computer
 - processor
 - long term memory (program storage)
 - short term memory (calculations)

Input and Output
- digital (binary: High, Low)
- analog (data sequence)
What makes your Arduino Uno board work:

- Runs at 16 MHz
- 32 KB Flash memory
- 2 KB RAM (for calculations)
- 1 KB EEPROM (re-writable read-only memory)
- 14 Digital Input/Output pins
- 6 Analog Input pins
The essentials of the Arduino board
The Arduino IDE

```cpp
#include <Wire.h>

void setup() {
    // initialize the digital pin as an output.
    pinMode(13, OUTPUT);
}

void loop() {
    digitalWrite(13, HIGH);  // set the LED on
    delay(1000);             // wait for a second
    digitalWrite(13, LOW);   // set the LED off
    delay(1000);             // wait for a second
}
```

This example code is in the public domain.
Basic button controls
Library of Arduino code

Language Reference

Arduino programs can be divided in three main parts: structure, values (variables and constants), and functions.

Structure

+ setup()
+ loop()

Control Structures

+ if
+ if...else
+ for
+ switch case
+ while
+ do...while
+ break
+ continue
+ return
+ goto

Further Syntax

+ ; (semicolon)
+ (curly braces)
+ / (slashe)
+ (function arguments)

Variables

Constants

+ HIGH
+ LOW
+ INPUT
+ OUTPUT
+ true
+ false
+ integer constants
+ floating point constants

Data Types

+ void
+ boolean
+ char
+ unsigned char
+ byte
+ int
+ unsigned int
+ word
+ long
+ unsigned long

Functions

Digital I/O

+ pinMode()
+ digitalWrite()
+ digitalRead()

Analog I/O

+ analogReference()
+ analogRead()
+ analogWrite() - PWM

Advanced I/O

+ tone()
+ noTone()
+ shiftOut()
+ shiftIn()
+ pulseIn()

Time

+ millis()
Getting your Arduino to do things...

void setup() {
 Serial.begin(9600);
}

void loop() {
 Serial.println("success!");
}

*You may need to change the rate of the serial monitor to 57600 in order to get a read.

Setup () function: Runs once at beginning of program execution

Loop () function: Loops the dynamic elements of the program
Breadboards
Digital Output: Make an LED blink
Digital Output: Code

```c
void setup()
{
    pinMode(13, OUTPUT);
}

void loop()
{
    digitalWrite(13, HIGH);
    delay(500);
    digitalWrite(13, LOW);
    delay(500);
}
```

- Play around with the delay length
- Create a variable blinking sequence
- Add more LEDs
Digital Input: Controlling your LED with a button
Digital Output: Code

```c
void setup(){
  pinMode(13, OUTPUT);
  pinMode(2, INPUT);
}

void loop(){
  if (digitalRead(2)==HIGH)
  {
    digitalWrite(13, HIGH);
  }
  else
  {
    digitalWrite(13, LOW);
  }
}
```

How IF statements work

Switch the result produced by pressing the button

`==` vs. `=`
Analog Input: Reading a variable resistor using Serial
Analog Input serial read: Code

```java
void setup() {
    //no setup required for analog inputs
    Serial.begin(9600);
}

void loop() {
    Serial.println(analogRead(0));
    delay(30);
}
```
Analog Input: Controlling LED with a potentiometer
Analog Input: Code

```cpp
const int analogInPin=0; //analog pin to which the potentiometer is attached
const int analogOutPin=9; //analog output pin to which the LED is attached

int sensorValue=0; //value read from the potentiometer
int outputValue=0; //value output to the analog out pin

void setup(){
}

void loop(){
    //read the analog value
    sensorValue=analogRead(analogInPin);
    //map it to the range of the analog out
    outputValue=map(sensorValue,0,1023,0,255);
    //change the analog out value
    analogWrite(analogOutPin, outputValue);
    delay(10);
}
```
Expanding the capabilities of the Arduino board

Using external power supplies
- USB vs. DC adapter
- Vin pin vs. 5V pin

Using shields: modular pre-made circuit boards for various functions
(touch screen, ethernet, blue tooth, and much more)