

Transistors

Instructor: Morgan Redfield 2010 February 21 2-4:30 PM

Today we'll be covering

- Background info about diodes
- What are transistors
- BJTs, a very common transistor
- Basic Switches
- Logic Gates
- Amplifiers

What we won't cover

- Why transistors do what they do
- How transistors are made

Diodes: the current valves

- Diodes let current through in only one direction
- They have a constant voltage drop.
- Two types of semiconductor mashed together (P-N Junction).

What are transistors?

What are transistors (really)?

The semiconductor sandwich

BJTs

Used in:

- Very common as discrete components
- Control current
- Low voltage amplifiers
- Cheap, easy switches

BJT

NPN

PNP

- Current controlled current amplifier
- Three main regions of operation
- Has current gain parameter β

Basic I-V curve

Changing I_{be} changes I-V curve

BJT NPN regions of operation

- Cut-off
 - $V_{be} < V_{th}$
 - $I_{ce} = 0$
- Forward Active
 - $V_{be} > V_{th}, V_{bc} < 0$
 - $I_{ce} = \beta_F I_{be}$
- Saturation
 - $V_{be} > V_{th}, V_{bc} > 0$
 - I_{ce} depends on load

Pull-down resistors

- Ensures that the input sees a certain voltage at all times
- Resistance is arbitrary
- Larger resistances are better (smaller current)

Current limiting resistors

- Sets I_{be} (and thus I_{ce})
- We know desired I_{ce}

•
$$I_{be} = I_{ce} / \beta$$

 Calculate R via Ohm's Law

•
$$R = V/I_{be}$$

•
$$V = V_{total} - V_{be}$$

The TO-92 package

NPN Switch

BJT PNP regions of operation

Cut-off

•
$$V_{be} > -V_{th}, V_{bc} < 0$$

•
$$I_{ce} = 0$$

Forward Active

•
$$V_{be} < -V_{th}, V_{bc} > 0$$

•
$$I_{ce} = \beta_F I_{be}$$

Saturation

•
$$V_{be} < -V_{th}, V_{bc} > 0$$

I_{ce} depends on load

PNP Switch

Logic Gates

- Generate binary output from binary inputs
- Can be chained together to create complex systems
- BJT logic gates operate in the saturation and cut-off regions

Not Gate

Or Gate

And Gate

Amplifiers

- Take a small signal and make it bigger
- Not a passive component (needs external power)
- Often used in audio, sensing, and communications

The simplest amplifier

Where do you go next?

- PSPICE
- Code, by Charles Petzold
- AC amps

Thanks to

- Jason Zack for the switch photo on slide 4
- Matthew Bowden for the faucet photo on slide 5
- Michael Frey for the TO-92 graphic on slide 14